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Abstract 
 

Tracking and display of human limb segment motions has been the topic of much 
research and development over many years for purposes as varied as basic human 
physiological studies, physical rehabilitation, sports training, and the construction of 
anthropomorphic robots. More recently, a new impetus has been given to such work by 
the desire to produce a whole body human/computer interface system, which encumbers 
the wearer to a minimum degree and operates over long distances. The input portion of 
such an interface can be derived by appropriate processing of signals from a nine-axis 
sensor package consisting of a three-axis angular rate sensor, a three-axis 
magnetometer, and a three-axis linear accelerometer. In this paper, such a sensor system 
is called a MARG (Magnetic field, Angular Rate, and Gravity) sensor. Recent advances 
in micromachining (MEMS) technology, and magnetometer miniaturization, have 
allowed the development of MARG sensors of very small size, suitable for attachment to 
individual human limb segments. At the same time, advances in wearable computers and 
wireless data communication techniques make it feasible to begin the development of a 
practical full body tracking system using sourceless MARG sensors. 

 
This paper focuses on data processing algorithms for MARG sensors. Since 

human limb segments are capable of arbitrary motion, Euler angles do not provide an 
appropriate means for specifying orientation. Instead, quaternions are used for this 
purpose. Since a quaternion is a four-dimensional vector, and a MARG sensor produces 
nine signals, this data processing problem is “overspecified”. This fact can be used to 
discriminate against sensor noise and to reduce the effects of linear acceleration on 
measurement of the gravity vector by accelerometers. Detailed computer simulation 
studies and the results of preliminary experiments with a prototype body tracking system 
confirm the effectiveness of the quaternion body-tracking filter.  

1. Introduction 
Since early times, the gravitational field of the Earth has been used to define the 

local vertical or “down” direction. Devices such as plumb bobs were used to measure the 
slope of Egyptian pyramids and many other early buildings and walls. With the advent of 
sailing ships (if not earlier), the notion of  “pitch” and “roll” angles as a measure of 
deviation from the vertical was introduced. Much later, perhaps a thousand years ago or 
so, the compass was invented as a means of measuring a third orientation angle usually 
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called “heading”. In the nineteenth century these angles were named “Euler” angles and 
their mathematical description was formalized (McGhee at al., 2000).  
 

As sailing ships grew in size and capability, long range navigation at sea, out of 
sight of land, became very important. The compass was a critical invention in enabling 
long distance sailing, with Columbus’ voyages to the “New World” being the most 
widely known early example. Various forms of sextants were also in use in ancient times 
to determine latitude from measurement of elevation angles to known stars. Such 
measurements required correction for ship pitch and roll angles to be effective. This was 
done with a plumb bob, bubble level, or similar device. Removal of pitch and roll effects 
on compasses on shipboard was usually achieved by floating the compass needle (or 
“heading rose”) on a liquid which remained more or less level relative to the horizon 
during ship pitching and rolling under wave and wind action. With the introduction of 
compasses to aircraft navigation, this approach no longer worked and instead spinning 
vertical gyros were used to maintain an “artificial horizon” during sustained aircraft 
maneuvers. In such applications, three-axis magnetometers are sometimes used to 
measure the Earth’s magnetic field, and heading then computed from values for pitch and 
roll angles obtained  from sensors attached to the vertical gyro (Frey, 1996). A similar 
approach is currently used in miniaturized electronic compasses intended for marine 
navigation  applications (Precision Navigation, 2000). 

 
For real-time human limb segment tracking, most current methods use active 

sources of some sort to track either angles or the position of reference points on limbs or 
joints  (Meyer et al., 1992; Molet et al., 1999). While this has worked well for some 
applications, such approaches typically either seriously encumber the subject, or work 
only over limited ranges, or both. However, in the case of head tracking, recent advances 
in sensor technology and small computers have made it possible to achieve effective 
sourceless tracking using only the Earth’s gravitational and magnetic fields as references 
for determination of orientation, analogous to the ship and aircraft systems described 
above. Head trackers of this type are now commercially available (Foxlin, 1994), and 
typically use some variant of MARG (Magnetic field, Angular Rate, and Gravity) sensors 
to determine values for head Euler angles. Full details of a similar system developed for 
small unmanned submarine navigation can be found in (Yun et al., 1999). The purpose of 
the present paper is to describe and evaluate alternative algorithms needed to extend 
sourceless tracking technology from head motion to full body motion. As will be seen, 
major changes in MARG sensor data processing techniques are needed if robust and cost-
effective body tracking is to be achieved. 

2. Quaternion Basics 
A fundamental problem with full body tracking using Euler angles arises from the 

fact that when a rigid body (or limb segment) is in a vertical orientation, heading and roll 
(bank) Euler angles are undefined, and cannot be uniquely determined. Even more 
seriously, the body rate to Euler angle rate transformation matrix (needed to derive Euler 
angle rates from body-fixed angular rate sensors) is singular for this orientation (McGhee 
et al., 2000). Fortunately, quaternions do not suffer from this problem since they express 
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rigid body orientation in terms of a single rotation about an inclined axis. A common way 
of expressing such an “angle-axis” pair in terms of a unit quaternion is: 

)2/sin()2/cos( Θ+Θ= uq  (1) 

where Θ is the rotation angle, and u is a unit three-dimensional “rotation axis” vector 
(McGhee et al., 2000). In this form, a unit quaternion looks very much like the polar 
form of a unit complex number: 

Θ=Θ+Θ= ieiz )sin()cos(  (2) 

where i is a “flag” designating the second (“imaginary”) element of a two-dimensional 
vector. Indeed, it is well known that a unit complex number accomplishes planar rotation 
of two-dimensional vectors under complex multiplication. That is, if 

1
1111

Θ=+= ieriyxz  (3) 

and 

2
2

Θ= iez  (4) 

then  

)(
11221

21 Θ+Θ== ierzzzz  (5) 

For quaternion rotation of three-dimensional vectors, the corresponding relationship is: 

 1
12

−⊗⊗= qvqv  (6) 

where 1v  is any three-dimensional vector (quaternion with 0 for first component) and ⊗  
denotes the quaternion product (McGhee et al., 2000). 
 

There are several equivalent ways to define the quaternion product (McGhee et 
al., 2000). The original approach, used by Hamilton, the discoverer of quaternions, was to 
view a quaternion as a four-dimensional generalization of a complex number, written as 

 suwq +=  (7) 

where w is the “real” part and s is the magnitude of the “vector” part. More precisely, 
what this equation really means is: 

)()0()000( zyxwzyxwq =+=  (8) 

where “+” is a vector sum and u is the unit vector 

)0( zyz uuuu =  (9) 
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Since u has only three non-zero components, it is also possible to describe it using the 
“flag” notation: 

zyx ukujuiu ++=  (10) 

By analogy to complex numbers, Hamilton defined a flag algebra as: 

)0001(1 −=−=⊗=⊗=⊗ kkjjii  (11) 

and 

)0001(−=⊗⊗ kji  (12) 

From these two definitions, it follows that 

 jkikjkijikijkji ⊗−==⊗⊗−==⊗⊗−==⊗ ,,   (13) 

The quaternion product is thus seen to have some of the features of the two-dimensional 
“complex” product, and some of the features of the three-dimensional vector “cross 
product” (McGhee et al., 2000). Analogous to the case with complex numbers and three-
dimensional vectors, flag algebra allows scalar algebra and scalar calculus to be applied 
to quaternion analysis. 
  
 Again by analogy to complex numbers, the conjugate of a quaternion, denoted as 
q*, is obtained by merely negating its vector part. That is, if q is written in the form of 
Eq. (8), then 

 )(* zyxwq −−−=  (14) 

It is a straightforward exercise in quaternion algebra (using Eq. (11) and (13)) to show 
that 

 22222** qzyxwqqqq =+++=⊗=⊗    (15) 

From this result, it is evident that Eq. (1) does in fact describe any unit quaternion. It is 
also clear from this relation that the inverse of any unit quaternion is just its conjugate. 
Evidently, for an arbitrary quaternion, 

 
*

*1

qq
qq
⊗

=−  (16) 

These definitions allow the computation of all terms appearing in Eq. (6), the basic 
relation for transforming points attached to a rigid body to the corresponding points in 
world coordinates. It is noteworthy that this approach is much less computationally 
demanding than the more common “rotation matrix” approach typically used in computer 
graphics for such transformations (McGhee et al., 2000). 
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3. Quaternion Filter 
 While all possible Euler angle sets are singular (non-unique) in some orientation, 
and body rate to Euler rate transformations are computationally expensive since they 
require vector-matrix products involving many trigonometric functions, determination of 
quaternion rates from body rates is free of both of these problems (McGhee et al., 2000). 
Specifically, if the reserved symbols p, q, and r are used for roll rate, pitch rate, and yaw 
rate respectively, then (Cooke et al., 1992; Kuipers 1998): 

 )0(
2
1 rqpqq ⊗=!  (17) 

In understanding this equation, it is important to realize that the symbol q has been 
overloaded, standing both for a quaternion and for pitch rate. Since both usages are 
standard, the authors have elected to write the equation in this form, trusting that any 
potential ambiguities will be resolved by context. 
 
  If an extremely accurate rate sensor is available (such as a ring laser gyro for 
example), then orientation can be determined by simply integrating this rate (Lawrence, 
1998). However, such sensors are large, heavy, and expensive, and not at all practical for 
human body segment tracking. Instead, micromachined “vibrating beam” sensors are 
more suitable for this purpose (Teegarden et al., 1998). While this type of sensor is 
inexpensive, lightweight, rugged, very small in physical dimensions, and requires 
negligible electrical power, its accuracy is such that errors resulting from integration of 
Eq. (17) become unacceptable after only a few seconds. This being the case, some form 
of  “drift correction” is required to obtain accurate results from integrating this equation. 
Figure 1 below shows one way that this can be done (Bachmann et al., 1999). 

+  

+

+

εq!

fullq∆

)ˆ(qε"

q!

Tbbbhhh )( 321321
Tqnqqmq )ˆˆ,ˆˆ( 11 −−

)0(ˆ
2
1 rqpq ∫

0y" )ˆ(qy"

TT XXX 1][ −

)( 321 hhh
A ccele ro m eters

)( rqp

A n gular- rate
Sen so rs

)( 321 bbb
M agnetom eters

k

-

q̂

 
Figure 1: Quaternion-Based Orientation Filter 
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As can be seen from this figure, drift correction is provided by the accelerometer and 
magnetometer components of a MARG sensor. Specifically, the vector h is a unit vector 
pointing in the direction of the total sensed acceleration (gravity plus linear acceleration), 
while the vector b is a unit vector aligned with the total magnetic field vector (earth field 
plus local disturbances). The vector 

0y"  is thus a six dimensional vector composed of 
these two unit vectors. The quaternion q̂  is the estimated orientation quaternion for the 
body being tracked, so ( )qy ˆ"  is a computed measurement vector determined from q̂ . In 
order to make this computation, it is necessary to use the known values )1000(=m  for 
the gravity unit vector and )0( zyx nnnn =  for the local magnetic field vector. With this 
understanding, it is evident that the modeling error vector, )ˆ(qε , represents the 
difference between what the sensors measure and what the quaternion filter predicts 
should be measured. 
 

Further examination of Figure 1 shows that the quaternion used to compute ( )qy ˆ"  
is the inverse of the orientation quaternion. This is because q̂  transforms points in body 
(sensor) coordinates to the corresponding points in world coordinates whereas the reverse 
transformation is needed to compute ( )q̂ε"  in sensor coordinates (McGhee et al., 2000). 
At this point in understanding this filter, it is important to recognize that while ( )q̂ε"  is a 
six-dimensional vector, the drift correction signal, 

eq! , is of dimension four. This means 
that a 4 x 6 matrix or some other transformation is needed to compute a value for the drift 
correction component of q!̂  from the modeling error vector. There is a vast body of 
literature on this type of problem generally referred to as Kalman filter theory, or more 
generally, optimal least-squares estimation theory (Brown & Hwang, 1997). In this 
paper, a simpler approach called non-linear regression analysis will be used. As will be 
seen in the following section of this paper, this method explains the relation 
 

 )ˆ(][ 1 qXXXkq TT
e ε"! −=  (18) 

shown in Figure 1. 

4. Non-linear Regression and Gauss-Newton Iteration 
Suppose that a vector dependent variable, y, depends on a vector independent 

variable, x. The general form of such a relationship is 

 )(xfy =  (19) 

Now let 0y  denote a measured value for y obtained in some type of experimental setting. 
In general, any real physical measurement will be to some degree corrupted by random 
noise. When such noise is additive (the most common assumption) (Brown & Hwang, 
1997), 0y  takes the form 
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 η+= )(0 xfy  (20) 

where η  is the (unknown) measurement noise vector. The fundamental problem of non-
linear regression analysis is to obtain a “best estimate” for an unknown x  from a given 
function f and a known (measured) value for 0y  (McGhee, 1967; Everitt, 1987). 
 In regression analysis, it is required that the dimension of y be greater than the 
dimension of x . This means that there is in general no value, xx ˆ= , such that 0)ˆ( yxf = . 
That is, to borrow terminology from linear algebra, there are “fewer unknowns than 
equations” when 0y  has more components than x . Problems of this type are said to be 
“overspecified” (Strang, 1988). In such cases, what is most often done is to define 
an error vector, ε" , as a column vector of M rows given by: 

 )()( 0 xfyx −=ε"  (21) 

and to then try to find an xx ˆ=  that minimizes the scalar squared error criterion function 
(McGhee, 1967):  

 )()()( xxx T εεϕ ""=  (22) 

The minimizing value for ϕ , namely xx ˆ= , is called the least squares estimate of the 
(unknown) true value for x . 
 Minimization of a non-linear function such as )(xϕ  is a basic problem, which has 
received much attention in mathematics for centuries. The widespread availability of 
digital computers, beginning about forty years ago, allowed much more complex 
minimization problems to be solved, and spurred a renewed interest in the mathematical 
underpinnings of optimization problems in general. One approach, which has proved to 
be effective for many regression problems, is Gauss-Newton iteration (Hartley, 1961; 
McGhee, 1963). In this technique, the M row vector function )(xf  is linearized about a 
given value, 0xx = , by using the first two terms in its Taylor series expansion, namely: 

 )()()( 2
00 xOxXxfxxf ∆+∆+=∆+  (23) 

where 0x  and x∆  are column vectors of N rows, N < M, and X is the M x N matrix of 
partial derivatives: 

 
j

i
ij x

fX
∂
∂=  (24) 

In utilizing Eq. (23), it is important to recognize that X is evaluated at 0xx = , and is 
therefore a constant matrix relative to changes in x about that value. Specifically, in what 
follows, 
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 0=
∆

=
xd

dX
dx
dX  (25) 

 Using only the linear part of Eq. (23), the error vector, ε" , can be approximated 
as: 

 xXxXxfyxx ∆−=∆−−=∆+ 0000 )()( εε ""
 (26) 

From the inverse law of transposed products (Strang, 1988), it follows that: 

 TTTT Xxxx ∆−=∆+ 00 )( εε ""  (27) 

Thus, from Eq. (22), the criterion function, )(xϕ , is approximated by: 

 xXXxXxxXx TTTTTT ∆∆+∆−∆−= 0000)( εεεεϕ """"  (28) 

which (providing X  is of full rank) is a positive definite quadratic form in x∆ (Strang 
1988; Cormen et al. 1994). Noting that every term in this equation is a scalar, and again 
using the inverse law of transposed matrices, it follows that 

 00 εε "" TTT XxxX ∆=∆  (29) 

so Eq. (28) can be simplified to: 

 xXXxXxx TTTTT ∆∆+∆−= 000 2)( εεεϕ """
 (30) 

From vector calculus (Rust & Burrus, 1972), using this expression, and Eq. (25), the 
gradient (vector derivative) of ϕ  is given by: 

 xXXX
dx
d TT ∆+−= 22 0εϕ "  (31) 

When ( )xϕ  is positive definite, the unique minimum of Eq. (30) is found by equating the 
above gradient to 0 with the result: 

 0
1][ ε"TT XXXx −=∆  (32) 

This equation defines Gauss-Newton iteration and explains Eq. (18), and the 
corresponding block of Figure 1, except for the scalar feedback gain factor, k . This 
factor relates to the stability and accuracy of the quaternion filter, and will be the subject 
of further discussion later in this paper. 
 All of the above analysis assumes that the neglected )( 2xO ∆  term in Eq. (23) is 
not important. This is often not the case, so in many problems it is necessary to apply Eq. 
(32) iteratively. This issue is investigated for the case of orientation quaternion estimation 
in a later section this paper.  
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5. Gauss-Newton Iteration for Quaternion Filter 
Appendix A derives the X  matrix of Figure 1 for an arbitrary non-zero 

quaternion, q, and also shows that multiplying any such quaternion by a non-zero scalar 
has no effect on the computed measurement vector, ( )qy , shown in Figure 1. 
Unfortunately, this latter fact means that q̂  is not unique. This has the further 
consequence that X  is not of full rank, and therefore the regression matrix  

 XXS T=  (33) 

appearing in Eq. (18) and (32) is singular (Strang, 1988). This means that S  has no 
inverse, and therefore this X  matrix cannot be used in Gauss-Newton iteration. 
Numerical experiments show that this is indeed the case. While this might at first seem to 
be extremely serious with respect to the correct functioning of the quaternion filter of 
Figure 1, this is not so. In fact, as described below, there are at least two distinct ways of 
dealing with the singularity of S . 
 

The most straightforward way to resolve the non-uniqueness problem for q̂  is to 
restrict it to be a unit quaternion. Specifically, if the output of the integrator block on 
Figure 1 is labeled q~ , then q~  can be normalized to a unit quaternion by adding an extra 
block that accomplishes the calculation: 

 
q
qq ~
~

ˆ =  (34) 

Somewhat surprisingly, this constraint also permits computationally significant 
improvements to the calculation of the X  matrix. Specifically, since the inverse of a unit 
quaternion is just its conjugate, Eq. (A-5) simplifies to (Henault, 1997): 
 

 1
0

1

=
∂
∂ −

q
q  (35) 

 i
q
q −=
∂
∂ −

1

1

 (36) 

 j
q
q −=

∂
∂ −

2

1

 (37) 

and 
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 k
q
q −=

∂
∂ −

3

1

 (38) 

Eq. (A-7) is likewise simplified by this substitution. In particular, using these results, 
from the product rule of differential calculus:  

 ( )Tnqqnmqqm
q
y ⊗+⊗⊗+⊗=

∂
∂ −− 11

0

,  (39) 

 ( )Tinqqniimqqmi
q
y ⊗⊗+⊗⊗−⊗⊗+⊗⊗−=

∂
∂ −− 11

1

,  (40) 

 ( )Tjnqqnjjmqqmj
q
y ⊗⊗+⊗⊗−⊗⊗+⊗⊗−=

∂
∂ −− 11

2

,  (41) 

 ( )Tknqqnkkmqqmk
q
y ⊗⊗+⊗⊗−⊗⊗+⊗⊗−=

∂
∂ −− 11

3

,  (42) 

 
In all of these expressions, it is to be understood that only the vector part of each triple 
quaternion product is used, and that the comma denotes concatenation. Thus, each of the 
above expressions constitutes one 6 x 1 column of the X  matrix. While these equations 
yield a numerically different X  matrix from that of Appendix A, simulation experiments 
show that, when q̂  is normalized to a unit quaternion on every computation cycle, then 
the associated matrix is not singular and Gauss-Newton iteration using these relations 
succeeds. 
 
 The second alternative to the computation of q̂  results from noting that if 

 fulloldnew qqq ∆+= ˆˆ  (43)   

and if both newq̂   and oldq̂  are unit quaternions, then any small fullq∆  must be orthogonal 
to q̂ . That is, the only way to alter a unit vector while maintaining unit length is to rotate 
it, and for small rotations q∆  must therefore be tangent to the unit four-dimensional 
sphere defined by equating Eq. (15) to 1. From the Orthogonal Quaternion Theorem of 
Appendix B, this means that: 

 ( )3210ˆ vvvqq ⊗=∆  (44) 

With this constraint, linearization of the expected measurement vector, y(q), in Figure 1, 
yields 
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 ( ) ( ) ( ) ( )TvvvqXqyqXqyqqy )0( 321⊗+=∆+=∆+  (45) 

and consequently: 
 

 ( )( ) ( )TiqXqX
v
y ⊗=⊗=

∂
∂ 0010

1

 (46) 

 ( )( ) ( )TjqXqX
v
y ⊗=⊗=

∂
∂ 0100

2

 (47) 

and 

 ( )( ) ( )TkqXqX
v
y ⊗=⊗=

∂
∂ 1000

3

 (48) 

 
From Eq. (44), it is evident that when Gauss-Newton iteration is applied to unit 
quaternions, it is sufficient to solve for only three unknowns rather than four as in the 
methods for estimation of fullq∆  considered until now. That is, if X  is the 6 x 3 matrix 

 








∂
∂

∂
∂

∂
∂=

321 v
y

v
y

v
yX v  (49) 

then, 

 [ ] ( )qXXXv vv
T

vfull ˆ
1

ε"
−

=∆  (50) 

and  

 ( )fullfull vqq ∆⊗=∆ ,0ˆ  (51) 

Simulation experiments show that this result functions correctly in Gauss-Newton 
iteration using either the X  matrix of Appendix A or the modified X matrix defined by 
Eq. (39) – (42).  
 
 When both of the above improvements are incorporated into the Gauss-Newton 
algorithm, simulation results are the same as those obtained from either one applied 
alone. Since Eq. (39) – (42) notably simplify the computation of the X  matrix, and Eq. 
(50) involves a 3 x 3 matrix inversion rather than the 4 x 4 matrix inversion of the basic 
algorithm, a considerable reduction in the time required for execution of one cycle of 
Gauss-Newton iteration results from use of a combined algorithm. In this regard, it is 
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particularly important that it is known that the best algorithms for matrix inversion are of 
( )3nO  complexity (Cormen et al., 1994). 

 
 As a final observation on uniqueness, while any of the above modifications to the 
results of Appendix A solves the problem of a singular regression matrix, from Eq. (A-2), 
it is evident that q̂−  produces the same computed measurement vector as q̂ . This means 
that if the initial error in q̂  is very large, then Gauss-Newton iteration can produce either 
of two answers, one with a negative real part, the other with a positive real part. While 
this is of no consequence to body tracking, it does matter in some applications. One such 
example is provided by rigid body dynamics (McGhee et al., 2000). In such cases, it is a 
simple matter to achieve uniqueness by transforming the result of any quaternion 
calculation to positive real form by simply negating any result with a negative real part. 

6. Convergence and Accuracy of Orientation Quaternion 
Estimation by Gauss-Newton Iteration 

 
The convergence of Gauss-Newton iteration can be investigated from either a 

local or global perspective. Conditions for local convergence are known, and are derived 
by writing the Taylor series for the criterion function, ( )qϕ , through the second 
derivative term, and then computing the eigenvalues of a specific matrix involving the 
regression matrix, S  (McGhee, 1963; Bekey & McGhee, 1964). If local convergence 
conditions are satisfied at one or more points inside a bounded search volume, then an 
algorithm exists which returns, with probability arbitrarily close to one, the value of q 
that produces the true minimum of ( )qϕ  within the search volume (McGhee, 1967).  
 
 By restricting q̂  to be a unit quaternion, the search volume is confined to the 
surface of a unit four-dimensional sphere. This fact guarantees global convergence to a 
true minimum value of ( )qϕ , providing that local convergence conditions are satisfied. 
Since it is very difficult to establish by analytic means that this is the case for all unit 
quaternions and all possible levels of measurement noise, this question has been studied 
by computer simulation. Specifically, several hundred simulation trials were conducted in 
which a random unit quaternion called “ trueq ” was generated along with another random 
(uncorrelated) unit quaternion called “ startq ”. Using noiseless synthetic data generated 
from trueq  by means of Eq. (A-6), and starting Gauss-Newton iteration at startq , no 
failures to converge were observed after ten cycles of iteration, although as expected, 
convergence to trueq−  was found to be just as likely as convergence to trueq . Evidently, 
Gauss-Newton iteration is very robust when applied to the orientation quaternion 
estimation problem. Interested readers are invited to explore this issue further by means 
of additional simulation trials using the test functions t1 through t3 included in the Lisp 
code available at http://npsnet.org/~bachmann/research.htm     
 
 The above discussion relates to filter initialization only since any useful filter 
must have the property that previous and updated values for q̂  differ by only a small 
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amount. That is, the very nature of “tracking” means that a reasonably good estimate for 
the current trueq  is available at all times following initialization. To test tracking 
properties of Gauss-Newton iteration, another simulation was conducted in which startq  
was produced by adding uniformly distributed noise with a maximum value of +/- 0.1 to 
each component of trueq . This is felt to be a rather severe test of the tracking capabilities 
of Gauss-Newton iteration since it corresponds to tracking errors of the order of 11.5% 
for unit quaternions. To see that this is so, let 

 η+= truestart qq  (52) 

and let γ  be a random variable uniformly distributed in the interval (-1, 1). Then, the 
variance, 2

γσ , of  γ  is given by (Levine, 1971), 

 
3
1

2
11

1

22 == ∫
−

γγσγ d  (53) 

From this result, if maxη  is the maximum absolute error in any component of startq  (equal 
to .1 in the above discussion), then since each of the four components of η  is 
independently generated, it follows that the expected root mean square error in startq  is 
given by: 

 115.
300

4
3
14 2

max ==





= ηση  (54) 

That is, the rms (root mean square) length of η  is this number, which is 11.5% of the 
length of a unit quaternion. 
 

After generating trueq  and startq , a six-dimensional vector of noiseless synthetic 
data was again generated using Eq. (A-6). Following this step, six-dimensional uniformly 
distributed noise in the range (-max-noise, max-noise) was added to this data. That is,  
the simulated measurement was computed as: 

 ( ) δ+= trueqyy0  (55) 

where each component of δ  is a sample of uniformly distributed noise in the above 
interval. By analogy to Eq. (54), it follows that: 

 max
2

max 414.1
3
16 δδσδ =





=  (56) 

That is, the rms length of δ  is approximately 40% more than the maximum absolute 
error in any of its six components. Using this type of synthetic data, a series of   
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simulation experiments was carried out in which the rms accuracy  of Gauss-Newton 
iteration was evaluated as a function of max-noise and the number of cycles of iteration 
within each experiment. The results of this study are summarized in Table 1. Each cell of 
this table is associated with the length of the error in q̂  averaged over one hundred 
random trials. New data was generated for each cell, so this table shows both systematic 
tendencies and random (sampling) fluctuations. The following paragraphs discuss the 
significance of the tabulated results. 
 
 

Number of Gauss-Newton Iteration Cycles Max. Noise 
per 

Component 1 2 3 

0.0 0.0066782855 3.1667924e-5 9.276619e-8 
0.001 0.006650507 8.304288e-4 8.1245136e-4 
0.01 0.011104382 0.008134228 0.007868233 
0.1 0.07969765 0.08627058 0.08296164 

Table 1: Observed RMS Error in Estimated Orientation Quaternion  
as a Function of Sensor Noise Level and Number of Cycles of  

Gauss-Newton Iteration 
                      
 Considering first the top row of Table 1, it can be seen that no failures to 
converge occurred in any of the three sets of one hundred experiments associated with 
each entry in this row. Moreover, q̂  never converged to trueq−  as was observed often in 
the initialization experiments described at the beginning of this section of this paper. This 
is because initialization involves completely random values for startq , while all of the 
experiments of Table I use a startq  with a maximum error of +/- 0.1 in each component. 
This means that trueq−  is not in the “domain of attraction” of startq  for these trials. 
Further examination of this row shows that, during tracking, three cycles of Gauss-
Newton with noiseless data results in estimation errors which are in the level of round-off 
errors. This is in contrast to initialization experiments in which it was found, as reported 
above, that somewhat more cycles are needed to achieve convergence when startq  is 
completely random. 
 
 Turning to the second row of Table I, it can be seen that two cycles of Gauss-
Newton iteration are sufficient when the maximum absolute value for the noise on each 
data component is equal to .001. In addition, the length of the vector error in q̂  is seen to 
be approximately 80% of the maximum noise per component. Examining the third row of 
the table shows that these two features persist when the maximum noise level is increased 
to .01. When the sensor maximum noise is increased to .1 (an unreasonably large value), 
the last row of Table I reveals an apparently anomalous behavior in that more Gauss-
Newton iteration cycles result in less accuracy. However, as confirmed by additional 
experiments not reported here, this effect is just the result of statistical fluctuations due to 
the independent trials associated with every entry in this table. The more important 
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conclusion from this row is that, with uniformly distributed noise on synthetic data 
samples, even at such unrealistically large noise levels, the average length of the vector 
error in q̂  is seen to remain at approximately 80% of the maximum data component noise 
level.  
 
 Lisp code for the simulation study reported in Table I is available at 
http://npsnet.org/~bachmann/research.htm, and the interested reader is invited to use the 
functions t4 through t15 defined in this code to confirm or extend the results reported 
here. However, the authors believe that the results of this table are sufficient to show that 
Gauss-Newton iteration provides both the stability and  accuracy needed for 
implementation of the drift correction feedback loop shown in Figure 1. The next section 
of this paper presents a modification to Gauss-Newton iteration which could be applied 
when errors in magnetometer data are either larger or smaller than those in accelerometer 
data, and also discusses criteria and methods for choosing the scalar gain factor, k, when 
Gauss-Newton iteration is combined with integration of q!  values obtained from angular 
rate sensors. 

7. Filter Tuning: Weighted Least Squares Regression and Complementary 
Filtering 

Referring again to Figure 1, the possibility exists of putting greater or less reliance 
on magnetometer data in comparison to accelerometer data. This could come about 
because one or the other of these signals could prove to be less accurate (or noisier) than 
the other. This can be achieved by merely redefining the error vector, ε , as: 
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Evidently, 1>ρ  emphasizes magnetometer data, while 10 << ρ  puts greater weight on 
accelerometer data. Clearly, this change also alters the X  matrix, simply by multiplying 
the last three elements of each column by 2ρ . If a detailed statistical model is available 
for magnetometer and accelerometer errors for a particular experimental setting then, at 
least conceptually, the best value for ρ  could be obtained either from Kalman filter 
theory (Brown & Hwang, 1997) or from some other statistical theory such as “maximum 
likelihood” parameter estimation (Levine, 1971). However, the authors are inclined to 
believe that this will usually be impractical for human body tracking applications, and 
that it is probably more productive to think of ρ  as a “tunable” parameter adjusted by 
“eyeball optimization” in a given situation. 
 
 All of the analysis and simulation up to this point in this paper has dealt only with 
the application of Gauss-Newton iteration to static problems. That is, it has been assumed 
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that only one measurement vector is available, and the Gauss-Newton procedure is 
applied iteratively to find fullq∆  as shown in Figure 1. While this kind of computation 
may be useful in some applications, body tracking is a dynamic problem in which 
estimation of the orientation quaternion must proceed in real-time, and in parallel with 
the acquisition of new data during the course of limb segment and body motion. As 
mentioned previously, there is a large body of knowledge dealing with such problems, 
ordinarily called filter theory (Brown & Hwang, 1997). This theory provides a means for 
analyzing the effects of the other tunable parameter in the quaternion orientation filter of 
Figure 1, namely the feedback gain factor, k.  
 
 The facts that Table I shows that rms estimated orientation quaternion errors are 
linearly related to rms sensor noise level, and that only one cycle of Gauss-Newton 
iteration may be sufficient in practical orientation tracking, imply that a linearization of  
Figure 1 is possible for purposes of stability analysis and investigation of the effects of 
the value of the feedback gain, k. Such a linearization is based on the recognition that, 
during tracking, even on the first Gauss-Newton iteration, it is a good approximation to 
assume that 

 qqq truefull ˆ−=∆  (58) 

Figure 2 below shows a linearized version of Figure 1 based on this assumption.  

+  

+

+

εq!
q! ∫

trueq

k

-

q̂

 
Figure 2: Linearized Orientation Quaternion Estimation Filter 

This filter has the form of a complementary filter (Brown & Hwang, 1997) in which the 
integral of  q! , which is accurate for short periods of time, is “complemented” by the 
integral of the drift correction derivative, εq! , which is dependable only when averaged 
over longer periods of time to counteract the confounding effects of linear acceleration on 
the measurement of gravity and of stray magnetic fields on the determination of heading. 
A key feature of complementary filters is the idea of a crossover frequency below which 
signals from one type of sensor are given greater weighting, and above which signals 
from another type of sensor are favored. From linear system theory (McGhee at al., 1995; 
Brown, 1997), the crossover frequency for Figure 2 is given by 

 Hzkfc π2
=  (59) 
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The meaning of this result is that below this frequency accelerometer and magnetometer 
signals are given greater emphasis, while above this frequency, rate sensor signals are 
more trusted. While it is possible to optimize k if full statistical information about sensor 
signal and noise characteristics is available, the authors doubt that this will often be the 
case, and believe instead that k is a parameter which, like the magnetometer emphasis 
factor, ρ , should be “tuned by eyeball” in a given experimental setting. Experience with 
this approach to date suggests that cf  should generally be somewhat less than the lowest 
significant frequency of linear acceleration resulting from limb segment motion. A more 
detailed discussion of guidelines for choosing a value for k, along with preliminary 
experimental results of human arm tracking can be found in (Bachmann, 2000). In these 
experiments, for the MARG sensor used, and for the type of motion tracked, values of k 
somewhere in the range 1.0 < k < 4.0 were found to be appropriate. Much more research 
on this issue in a variety of experimental contexts is still needed. 
 
 As a final remark, it should be recognized that Figure 1 and Figure 2 represent 
continuous time or analog realizations of orientation quaternion tracking. While this 
would be possible if the X  matrix were constant, in fact it is not and must be reevaluated 
on every cycle of Gauss-Newton iteration. This means that only a discrete time or digital 
filter is possible. This represents no problem if the integration in these figures is simply 
approximated by a discrete sum, providing that the update cycle time is short enough. 
The fact that Figure 2 is linear allows this issue to be treated analytically (Bachmann, 
2000), but such analysis is beyond the scope of this paper. 

8. Summary and Conclusions 
 
 While sourceless tracking of human head motion using only the gravitational and 
magnetic fields of the Earth as orientation references has been accomplished and 
commercialized (Foxlin, 1994), there has been, until recently (Bachmann, 2000), no 
corresponding success in whole body limb segment tracking. The authors of this paper 
believe that success in such an endeavor requires not only better MARG sensor packages 
than are currently commercially available, but also a completely different approach to 
sensor data processing than has been used for head tracking and related ship and aircraft 
navigation systems. The primary purpose of the present paper is to present an efficient 
and robust algorithm for sourceless real-time tracking and subsequent display of human 
limb motion, which is free of the singularity problems and computational complexity of 
prior algorithms based on Euler angles or anatomical joint angles (Semwai et al., 1998; 
Molet et al., 1999; Bachmann, 2000). 
 
 The algorithm which has been discovered in the course of this research relies on 
the Orthogonal Quaternion Theorem, which is believed to be a new result. This theorem 
both resolves the singularity problem of Gauss-Newton iteration applied to orientation 
quaternion tracking, and reduces the size of the associated regression matrix from 4 x 4 to 
3 x 3. Since inversion of this matrix is probably the most time consuming part of Gauss-
Newton iteration, and matrix inversion is of ( )3nO  complexity, where n is the size of the 



 18

matrix, the computational advantages arising from the application of this theorem are 
substantial, and are especially important when simultaneously tracking a large number of 
human limb segments. 
 
 An important feature of the algorithm we have developed is that it contains two 
scalar gain factors that allow “tuning” of the filter to fit a particular tracking situation. 
Preliminary guidelines for choosing values for these parameters have been provided and 
are included in (Bachmann, 2000) However, it is believed that final selection of gains is 
best accomplished by adjustment during the course of an experiment, analogous to the 
way the controls of a radio are adjusted by a listener to get the desired tone quality, 
speaker balance, etc. We think that this is a new idea with respect to sourceless tracking, 
and of sufficient importance that we have decided to name our procedure the “Tuneable 
Quaternion Tracker” (TQT) algorithm. 
 
 The TQT algorithm is designed to function with nine-axis MARG sensors as 
described in the body of this paper and illustrated in Figure 1. However, it is important to 
recognize that in static problems (or in situations where angular rates and linear 
accelerations are sufficiently low) the angular rate sensing and integration part of this 
algorithm may not be needed. That is, another way of looking at the TQT algorithm is 
that the angular rate portion of the algorithm is needed only to “quicken”  the response of 
the filter to compensate for the lag in Gauss-Newton estimation introduced by the scalar 
gain k in the drift correction feedback loop. If the actual motion being tracked is 
sufficiently slow, such quickening may not be needed. In such cases, rate sensing will not 
be required and the MARG sensor can be simplified to a six-axis device. 
 
 As a final remark, we are aware that this paper does not present any details 
regarding the actual implementation and tracking of human limb motions in real time. In 
fact, we have only preliminary results in this area (Bachmann et al., 1999), but an 
intensive effort in sensor improvement and in full real-time software development is 
currently underway at our institution. The computer simulation results contained in this 
paper and our experimental results on human arm and leg tracking (Bachmann, 2000; 
Bachmann et al., 2001) encourage us to believe that we will succeed in producing a very 
effective sourceless whole body tracking system prototype in the next several years of 
our research. As a final remark, we are aware that the linearization of the TQT filter 
presented in Figure 2, along with the Orthogonal Quaternion Theorem (which allows 
modeling of orthogonal noise so that the constraint of unit quaternions can be maintained 
even with sensor noise), permits the scalar gain k to be replaced by a Kalman filter gain 
matrix. We are not sure of the practicality of such a modification, but this is a topic we 
intend to pursue (Marins, 2000) and would likewise be pleased to have others join us in 
this effort 

9. Acknowledgements 
The authors wish to acknowledge the support of the U. S. Army Research Office (ARO) 
under Proposal No. 40410-MA and the U. S. Navy Modeling and Simulation 
Management Office (N6M) for making this work possible. 



 19

References 
Bachmann, E., McGhee, R., Yun X. & Zyda, M. (2001). “Real-Time Tracking and 
Display of Human Limb Segment Motions Using Sourceless Sensors and a Quaternion-
Based Filtering Algorithm - Part II: Implementation and Calibration,” MOVES Academic 
Group Technical Report NPS-MV-01-003, Naval Postgraduate School, Monterey, CA. 
http://npsnet.org/~moves/TechReports/NPS-MV-01-003.pdf 
 
Bachmann, E. (2000). Inertial and Magnetic Angle Tracking of Limb Segments for 
Inserting Humans into Synthetic Environments, Ph.D. dissertation, Naval Postgraduate 
School, Monterey, CA.  
 
Bachmann, E., Duman, I., Usta, U., McGhee, R., Yun, X., & Zyda, M. (1999). 
“Orientation Tracking for Humans and Robots Using Inertial Sensors”, Proc. of 1999 
IEEE International Symposium on Computation in Robotics and Automation, CIRA’99, 
Monterey, California, USA, pp. 187 – 194.  
 
 
Bekey, G., & McGhee, R. (1962). “Gradient Methods for the Optimization of Dynamic 
System Parameters by Hybrid Computation”, in Computing Methods in Optimization 
Problems, ed. by A.V. Balakrishnan and L.W. Neustadt, Academic Press, New York, pp. 
305 – 327. 
 
Brown, R. & Hwang, P. (1997). Introduction to Random Signals and Applied Kalman 
Filtering, 3rd Edition, John Wiley and Sons, New York, 
 
Cooke, J., Zyda, M., Pratt, D., & McGhee, R. (1992). “NPSNET: Flight Simulation 
Modeling Using Quaternions”, Presence: Teleoperators and Virtual Environments, 
Vol.1, No. 4, MIT Press, pp. 404 – 420. 
 
Cormen, T., Leiserson, C., & Rivest, R. (1994). Introduction to Algorithms, McGraw-
Hill, New York, 
 
Everitt, B. (1987). Introduction to Optimization Methods and Their Application in 
Statistics, Chapman and Hall, New York. 
 
Frey, W. (1996). Application of Inertial Sensors and Flux-Gate Magnetometers to Real-
Time Human Body Motion Capture, M.S. thesis, Naval Postgraduate School, Monterey, 
CA. 
 
Foxlin, E. (1994). “An Inertial Head-Orientation Tracker with Automatic Drift 
Compensation for Use with HMD’s”, Proc. Virtual Reality Software and Technology, 
VRST’94, edited by G. Singh, S.K. Feiner, and D. Thalmann, World Scientific, 
Singapore. Also see www.isense.com. 
 
Hartley, H. (1961) “The Modified Gauss-Newton Method for the Fitting of Nonlinear 
Regression Functions by Least Squares”, Technometrics, Vol. 3, No. 2, pp. 269 – 280. 



 20

 
Henault, G. (1997). A Computer Simulation Study and Computational Evaluation for a 
Quaternion Filter for Sourceless Tracking of Human Limb Segment Motion, M.S. thesis, 
Naval Postgraduate School, Monterey, CA. 
 
Kuipers, J. (1998). Quaternions and Rotation Sequences, Princeton University Press, 
Princeton, NJ, 
 
Lawrence, A. (1998). Modern Inertial Technology, 2nd Edition, Springer-Verlag, New 
York. 
 
Levine, A. (1971). Theory of Probability, Addison-Wesley, Reading, MA. 
 
McGhee, R. (1963). Identification of Nonlinear Dynamic Systems by Regression Analysis 
Methods, Ph.D. Dissertation, University of Southern California,. Available from 
www.contentville.com. 
 
McGhee, R. (1967). “Some Parameter-Optimization Techniques”, Chapter 4.8, Digital 
Computer User’s Handbook, ed. by M. Klerer and G.A. Korn, pp. 234 – 255. 
 
McGhee, R., Bachmann, E., & Zyda, M. (2000). “Rigid Body Dynamics, Inertial 
Reference Frames, and Graphics Coordinate Systems: A Resolution of Conflicting 
Conventions and Terminology”, MOVES Academic Group Technical Report NPS-MV-
01-002, Naval Postgraduate School, Monterey, CA. 
 
McGhee, R.B., et al., “An Experimental Study of an Integrated GPS/INS System for 
Shallow-Water AUV Navigation Systems (SANS)”, Proc. Of  9th International 
Symposium on Unmanned Untethered Submersible Technology, Marine Systems 
Engineering Laboratory, Northeastern University, Sept.25 – 27, 1995, pp. 153 –167.  
 
Meyer, K., Applewhite, H., &  Biocca, F. (1992). A Survey of Position Trackers, 
Presence: Teleoperators and Virtual Environments, Vol. 1, No. 2, MIT Press, pp. 173 – 
200. 
 
Molet, T., Boulic, R., & Thalman, D., “Human Motion Capture Driven by Orientation 
Measurements”, Presence: Teleoperators and Virtual Environments, Vol. 8, No. 2, MIT 
Press, pp. 187 – 203. 
 
Precision Navigation, Inc., (2000). TCM2 Compass Product Specifications, Inc., Santa 
Rosa, CA95403,. Available at www.precisionnav.com. 
 
Rust, B., & Burrus, W. (1972). Mathematical Programming and the Numerical Solution 
of Linear Equations, Elsevier, New York. 
 

http://www.contentville.com/
http://www.precisionnav.com/


 21

Semwai, S., Hightower, R., & Stansfield, S. (1998). “Mapping Algorithms for Real-Time 
Control of an Avatar Using Eight Sensors”, Presence: Teleoperators and Virtual 
Environments, Vol. 7, No. 1, MIT Press, pp. 1 – 21. 
 
Strang, G. (1988).Linear Algebra and Its Applications, 3rd Edition, Harcourt College 
Publishers, San Diego, CA. 
 
Teegarden, D., Lorenz, G., & Neul, R. (1998). “How to Model and Simulate 
Microgyroscope Systems”, IEEE Spectrum, pp. 66 – 75. 
 
Yun, X., et al., (1999). “Testing and Evaluation of an Integrated GPS/INS System for 
Small AUV Navigation”, IEEE Journal of Oceanic Engineering, Vol. 24, No. 3, pp. 396 
– 404. 

Appendix A: Derivation of X-Matrix for Quaternion Filter 
 Suppose q is a unit quaternion and qq α=~ , where α  is any non-zero scalar. 
Then from Eq. (15): 

 22|~| α=q  (A-1) 

and  

 1
2

*
1~~ −− ⊗⊗=⊗⊗=⊗⊗ qvqqvqqvq

α
αα  (A-2) 

This result shows that there is no requirement for orientation quaternions to be unit 
quaternions. As shown in the following paragraph, this fact can be used to derive the X  
matrix appearing in Figure 1. 
 
 Suppose ( )3210 qqqqq =  is an arbitrary non-zero quaternion. Then, by definition, 

 )0001(011 =+=⊗ − uqq  (A-3) 

so from the product rule of differential calculus 
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From Figure 1, for the quaternion filter, )ˆ(qy  is given by 
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 ( )Tqnqqmqqy ˆˆ,ˆˆ)ˆ( 11 ⊗⊗⊗⊗= −−  (A-6) 

where it is understood that the comma in this expression denotes concatenation and that 
only the vector part of the indicated expressions is used. Thus )ˆ(qy  is a six-row column 
vector, the same as 0y . Using this result, together with Eq. (A-5) above, it follows from 
the product rule that 
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and similarly for the last three components of )ˆ(qy . To complete the derivation of X, it is 
only necessary to note that, from Eq. (8) and (9),  
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Now if it is recognized that each column of X  can be written as a six dimensional vector, 
then Eq. (A-7) through (A-11) define X . ANSI Common Lisp code for computing X  is 
available at http://npsnet.org/~bachmann/research.htm, and provides a convenient 
executable specification for the details of this result. This code also includes a means of 
evaluating the X  matrix by numerical differentiation of the computed measurement 
vector, ( )qy ˆ . These two methods give essentially identical results, lending considerable 
credence to both the above analysis and the associated Lisp code. 

Appendix B: Orthogonal Quaternion Theorem 
Theorem: Let p and q be any two quaternions whose dot product is equal to 0. Such 
quaternions are said to be orthogonal. For all such p and q, vqp ⊗=  where v is a unique 
vector and is given by pqv ⊗= −1 . 
 
Proof: If q and v are written using flag notation, then 
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 3210 qkqjqiqq +++=   (B-1) 

 
and 

 1 2 30v iv jv kv= + + +   (B-2) 

 
Multiplying using flag algebra, and collecting terms, evidently: 
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Thus, the dot product of q and p is given by 
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which proves orthogonality.  For the second part of the theorem,  

 vvvqqpq =⊗=⊗⊗=⊗ −− 111   (B-5) 

 
which is unique. 
 
Q.E.D. 
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